
Externally Definable Sets and Shelah Expansions

Roland Walker

University of Illinois at Chicago

September 22, 2016

Roland Walker (UIC) Ext Def Sets and Shelah Expansions September 22, 2016 1 / 28



Set Up and Notation

Let L be a language.

Let T be a complete L-theory with an infinite model M.

Let U denote the monster model of T .

We will view all models of T as elementary substructures of U .

We will let x , y , z , ... range over finite tuples of variables and a, b, c, ...
over finite tuples of parameters.
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Set Up and Notation

Suppose B ⊂ U.

We will use L(B) to denote the set of all L-formulae with parameters in
B; i.e.,

L(B) = {φ(x , b) : φ(x , y) ∈ L and b ∈ B |y |}.

Given a ∈ U, we will use tp(a/B) to denote the “type of a over B”; i.e.,

tp(a/B) = {φ(x , b) ∈ L(B) : U |= φ(a, b)}.

We will use Sn(B) to denote the set of all complete n-types over B; i.e.,

Sn(B) = {tp(a/B) : a ∈ Un}.
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Traces and Induced Structures

Let A ⊂ U, φ(x , y) ∈ L, and b ∈ U.

Definition

The trace of φ(x , b) in A is

φ(A, b) = {a ∈ A|x | : U |= φ(a, b)}.

We can induce a structure on A using traces.

Definition

Given B ⊂ U, define the language

LindB = {Rφ(x ,b) : φ(x , b) ∈ L(B)}

and let AindB denote the structure with domain A such that for all
a ∈ A|x |, we have

AindB |= Rφ(x ,b)(a) ⇐⇒ U |= φ(a, b).
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Externally Definable Sets and Shelah Expansions

Definition

We call X ⊆ Mn externally definable iff:
there exists φ(x , y) ∈ L and b ∈ U such that X = φ(M, b).

Let M′ �M be |M|+-saturated.

Let LSh = LindM′ = {Rφ(x ,b) : φ(x , b) ∈ L(M ′)}.

Let MSh = MindM′ .

By saturation, MSh contains a predicate for every externally definable
subset of M.

We will show that if T is NIP, then MSh has quantifier elimination (QE).
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Why do we care?

For any A,B ⊂ U, let Traces(A,B) denote the collection of all traces in A
by formulae with parameters in B.

For any structure A, let D(A) denote the collection of all sets definable in
A by formulae with parameters in A.

In general:

Traces(A,B) ⊆ D(AindB)

Traces(M,M ′) = Traces(M,U) ⊆ D(MSh)

If MSh has QE:

Traces(M,M ′) = Traces(M,U) = D(MSh) = D((MSh)Sh)
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Why do we care?

Easy way to generate weakly o-minimal structures:

If T is o-minimal (e.g., DLO, ODAG, RCF), it follows that MSh is
weakly o-minimal.

Current Research:

What conditions are sufficient for MindA to have QE?
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Heirs and Coheirs

Suppose M ⊆ B ⊂ U. Let q(x) ∈ S(B) extend p(x) ∈ S(M).

Definition

We say q is an heir of p iff: q “satisfies no new formulae,” meaning

φ(x , b) ∈ q =⇒ for some m ∈ M, φ(x ,m) ∈ p.

Intuition: The heirs of a type are the extensions of that type that are
most like the original.

Definition

We say q is a coheir of p iff: q is finitely satisfiable in M.

Fact: Types over models have heirs and coheirs over any larger set
of parameters.
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Heir/Coheir Duality

For a, b ∈ U, TFAE:

tp(a/Mb) is an heir of tp(a/M)

tp(b/Ma) is a coheir of tp(b/M)

for all φ(x , y) ∈ L, if U |= φ(a, b), then U |= φ(a,m) for some m ∈ M

Example: (R, <) � ((−1, 1), <) |= DLO

tp(3/(−1, 1) ∪ {2}) is an heir but not a coheir of tp(3/(−1, 1))

tp(2/(−1, 1) ∪ {3}) is a coheir but not an heir of tp(2/(−1, 1))
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Coheir Sequences are Indiscernible

Suppose M ⊆ B ⊂ U and q(x) ∈ S(B) is finitely satisfiable in M.

(Note: q is a coheir of q�M )

Definition

A sequence (bi : i < ω) ⊆ B such that bi |= q�Mb<i
is called a coheir

sequence for q over M.

Lemma

Coheir sequences over M are indiscernible over M.
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Coheir Sequences are Indiscernible

Proof: Suppose M ⊆ B ⊂ U. Let q(x) ∈ S(B) be finitely satisfiable in M.
Suppose (bi : i < ω) ⊆ B and bi |= q�Mb<i

.

Let P(n) denote the following assertion: ∀ i1 < · · · < in ∀ φ ∈ L(M)

U |= φ(bi1 , ..., bin)↔ φ(b1, ..., bn).

Assume ¬P(n + 1). So ∃ i1 < · · · < in+1 ∃ φ ∈ L(M)

U |= φ(bi1 , ..., bin , bin+1) ∧ ¬φ(b1, ..., bn, bn+1).

It follows that

φ(bi1 , ..., bin , x), ¬φ(b1, ..., bn, x) ∈ q.

Since q is finitely satisfiable in M, there exists m ∈ M such that

U |= φ(bi1 , ..., bin ,m) ∧ ¬φ(b1, ..., bn,m)].

But this implies ¬P(n), so the lemma holds by induction on n.
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The Independence Property

Definition

We say that T has the independence property (is IP) iff: for some
φ(x , y) ∈ L, there exist sequences of parameters (an : n < ω) and
(bX : X ⊆ ω) such that

U |= φ(an, bX ) ⇐⇒ n ∈ X .

Fact: T is IP if and only if for some φ(x , u) ∈ L(U), there exists a
sequence of parameters (an : n < ω) which is indiscernible
over ∅ such that

U |= φ(an, u) ⇐⇒ n is even.

Definition

We say that T is NIP iff: T is not IP.
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Notation for the Quantifier-Free Setting

We will use “qf” as a subscript when we wish to consider only
quantifier-free formulae. For example, given a ∈ U and B ⊂ U:

Lqf(B) denotes the quantifier-free formulae in L(B)

Sqf(B) denotes the complete quantifier-free types over B

tpqf(a/B) denotes the quantifier-free type of a over B
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Quantifier-Free-Definable Types

Definition

We say that p(x) ∈ Sqf(B) is quantifier-free definable iff: for every
φ(x , y) ∈ Lqf, there exists dφ(y) ∈ Lqf(B) such that for all b ∈ B |y |, we
have

φ(x , b) ∈ p ⇐⇒ U |= dφ(b).

In such cases, we call d = {dφ : φ ∈ Lqf} a defining schema for p.

Fact: If A ⊂ U, then d(A) = {φ(x , a) : U |= dφ(a)} ∈ Sqf(A).

Example: (Q, <) |= DLO

tp(0+/Q) is definable (e.g., dx>y (y) is y ≤ 0)

tp(π/Q) is not definable by o-minimality
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Quantifier-Free Heirs and Coheirs

Suppose M ⊆ B ⊂ U. Let q(x) ∈ Sqf(B) extend p(x) ∈ Sqf(M).

Definition

We say q is a quantifier-free heir of p iff: q “satisfies no new formulae.”

Definition

We say q is a quantifier-free coheir of p iff: q is finitely satisfiable in M.

Fact: Quantifier-free heirs and coheirs exist.

For a, b ∈ U, TFAE:

tpqf(a/Mb) is a quantifier-free heir of tpqf(a/M)

tpqf(b/Ma) is a quantifier-free coheir of tpqf(b/M)

for all φ(x , y) ∈ Lqf, if U |= φ(a, b), then U |= φ(a,m) for some
m ∈ M
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Uniqueness of Quantifier-Free Heirs

Suppose M ⊆ B ⊂ U. Let p(x) ∈ Sqf(M).

Lemma

If p is quantifier-free definable by schema d, then d(B) is the unique
quantifier-free heir of p over B.

Proof: Elementarity ensures that d(B) is an heir since

φ(x , b) ∈ d(B) ⇒ U |= dφ(b) ⇒ U |= ∃y dφ(y) ⇒ M |= ∃y dφ(y).

Let q ∈ Sqf(B) be an heir of p. In order to reach a contradiction, assume
q is not d(B). It follows that for some φ(x , y) ∈ Lqf and b ∈ B, we have

¬(φ(x , b)↔ dφ(b)) ∈ q.

But since q is an heir, this implies that

¬(φ(x ,m)↔ dφ(m)) ∈ p

for some m ∈ M.
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Uniqueness of Quantifier-Free Coheirs

Suppose M ⊆ B ⊂ U. Let p(x) ∈ Sqf(M).

Lemma

If every complete quantifier-free type over M is quantifier-free definable,
then p has a unique quantifier-free coheir over B.

Proof: Suppose q1, q2 ∈ Sqf(B) are coheirs of p.

Let a1 |= q1, a2 |= q2, and φ(x , b) ∈ q1.

It follows that tpqf(b/Ma1) and tpqf(b/Ma2) are heirs of tpqf(b/M).

Let d be a defining schema for tpqf(b/M).

The previous lemma asserts that tpqf(b/Mai ) = d(Mai ) for i = 1, 2.

φ(x , b) ∈ qi ⇐⇒ U |= φ(ai , b) ⇐⇒ φ(ai , y) ∈ tpqf(b/Mai )

⇐⇒ U |= dφ(ai ) ⇐⇒ dφ(x) ∈ p

Roland Walker (UIC) Ext Def Sets and Shelah Expansions September 22, 2016 17 / 28



Constructing M∗

Recall:

M′ �M is |M|+-saturated

LSh = LindM′ = {Rφ(x ,b) : φ(x , b) ∈ L(M ′)}
MSh = MindM′

Let L∗ = L ∪ LSh = L ∪ {Rφ(x ,b) : φ(x , b) ∈ L(M ′)}.

For each φ(x , b) ∈ L(M ′), let

RM
∗

φ(x ,b) = φ(M, b) = {m ∈ M |x | :M′ |= φ(m, b)}.

M′

g

M L-reduct←−−−−−−−−− M∗ LSh-reduct−−−−−−−−−−→ MSh
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Properties of M∗

M′

g

M L-reduct←−−−−−−−−− M∗ LSh-reduct−−−−−−−−−−→ MSh

For all φ(x) ∈ L(M), we have

M∗ |= φ(x)↔ Rφ(x).

Furthermore, by induction on L∗qf, we conclude that for all ψ(x) ∈ L∗qf,
there exists θ(x) ∈ L(M ′) such that

M∗ |= ψ(x)↔ Rθ(x).
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Constructing a well-behaved N ∗ �M∗

Let κ = |L|+ |M ′|.

Let (N ′,N) � (M′,M) be κ+-saturated.

For each φ(x , b) ∈ L(M ′), let

RN
∗

φ(x ,b) = φ(N, b) = {n ∈ N |x | : N ′ |= φ(n, b)}.

It follows that N ∗ �M∗ is κ+-saturated.

U
g

N L-reduct←−−−−−−−−− N ∗

g g

M L-reduct←−−−−−−−−− M∗ LSh-reduct−−−−−−−−−−→ MSh
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Properties of N ∗

U
g

N L-reduct←−−−−−−−−− N ∗

g g

M L-reduct←−−−−−−−−− M∗ LSh-reduct−−−−−−−−−−→ MSh

For all φ(x) ∈ L(M), we have

N ∗ |= φ(x)↔ Rφ(x).

Furthermore, for all ψ(x) ∈ L∗qf, there exists θ(x) ∈ L(M ′) such that

N ∗ |= ψ(x)↔ Rθ(x).
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Working with Types of T ∗

Let T ∗ = Th(M∗).

We will use S∗ when referring to type spaces of T ∗.

Lemma

Each p∗(x) ∈ S∗qf(∅) extends uniquely to p∗�M (x) ∈ S∗qf(M).

Proof: For each φ(x , y) ∈ L∗qf and m ∈ M |x |, we have

M∗ |= φ(x ,m)↔ Ry=m(y) ∧ φ(x , y).

Lemma

For each q∗(x) ∈ S∗qf(N), there is a unique q(x) ∈ S(N) such that q∗ ` q.

Proof: For each φ(x , y) ∈ L and n ∈ N, we have

N ∗ |= φ(x , n)↔ Rφ(x , n).
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Types in S∗qf(M) Are Quantifier-Free Definable

Lemma

Each p∗ ∈ S∗qf(M) is quantifier-free definable.

Proof: Fix p∗(x) ∈ S∗qf(M) and ψ(x , y) ∈ L∗qf. Let a ∈ N realizes p∗.

We need to find dψ(y) ∈ L∗qf(M) whose trace in M is

B = {b ∈ M : N ∗ |= ψ(a, b)}.

There exist θ(x , y) ∈ L(M ′) such that for all b ∈ M, we have

N ∗ |= ψ(a, b) ⇐⇒ N ∗ |= Rθ(a, b) ⇐⇒ U |= θ(a, b).

It follows that

B = {b ∈ M : U |= θ(a, b)}

and, therefore, is externally definable, so we can let dψ be RB ∈ LSh.
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T NIP =⇒ T ∗ QE

Lemma

T ∗ has quantifier elimination if and only if for all n < ω and p∗ ∈ S∗n (∅),
we have T ∗ + p∗�qf ` p∗�∃.

Theorem

If T is NIP, then T ∗ has quantifier elimination.

Proof: (Contrapositive) Suppose T ∗ does not have quantifier elimination.

There exists p∗(x) ∈ S∗qf(∅) which has more than one extension to a
complete existential type over ∅.
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T NIP =⇒ T ∗ QE

It follows that for some θ(x , y) ∈ L(M ′), both

p∗(x) + ∃y Rθ(x , y) and p∗(x) + ¬∃y Rθ(x , y)

are consistent with T ∗.

Let q∗(x , y) ∈ S∗qf(∅) be an extension of p∗(x) + Rθ(x , y).

Let p∗1(x) ∈ S∗qf(N) and q∗1(x , y) ∈ S∗qf(N) be the unique coheirs of p∗�M

and q∗�M , respectively. It follows that p∗1(x) = q∗1(x , y)�x .

Let r∗1 (x) ∈ S∗(N) be an extension of p∗(x) + ¬∃y Rθ(x , y) which is
finitely satisfiable in M. It follows that p∗1 ⊆ r∗1 , so p∗1(x) +¬∃y Rθ(x , y) is
finitely satisfiable in N.
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T NIP =⇒ T ∗ QE

Recap:

q∗1(x , y) ∈ S∗qf(N) is finitely satisfiable in M

Rθ(x , y) ∈ q∗1
p∗1(x) = q∗1�x
p∗1(x) + ¬∃y Rθ(x , y) is finitely satisfiable in N

Let p1(x) ∈ S(N) and q1(x , y) ∈ S(N) be such that p∗1 ` p1 and q∗1 ` q1.

Claim

q1(x , y) + ¬Rθ(x , y) is finitely satisfiable in N.

Proof of Claim: Let a, a′, b ∈ U such that

(a, b) |= q∗1(x , y) and a′ |= p∗1(x) + ¬∃y Rθ(x , y).

Since a, a′ |= p1(x), there exists σ ∈ Aut(U/N) mapping a 7→ a′.

Let b′ = σ(b). It follows that (a′, b′) |= q1(x , y) + ¬Rθ(x , y).
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T NIP =⇒ T ∗ QE

Recap:

q∗1(x , y) ∈ S∗qf(N) is finitely satisfiable in M

Rθ(x , y) ∈ q∗1
q1(x , y) ∈ S(N) such that q∗1 ` q1

q1(x , y) + ¬Rθ(x , y) is finitely satisfiable in N

By saturation, we can construct (an, bn)n<ω ⊆ N so that

n even : (an, bn) |= q∗1(x , y)�Ma0b0...an−1bn−1

n odd : (an, bn) |= q1(x , y)�Ma0b0...an−1bn−1 + ¬Rθ(x , y)

Compactness implies that q1 is finitely satisfiable in M, so (an, bn)n<ω is a
coheir sequence and, as such, is L-indiscernible over M.

Now N ∗ |= Rθ(an, bn) if and only if n is even, so U |= θ(an, bn) if and only
if n is even. Thus, T is IP. �
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Active Research

Open Questions:

In general, what conditions are sufficient for MindA to have QE?

If I is a Morley sequence of an M-invariant type, does Mind I have
QE?

Closed Question:

If I is a Morley sequence of an M-invariant type p and p(ω) is both
an heir and a coheir of its restriction to M, does Mind I have QE?

YES (Simon, 2013)
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