Externally Definable Sets and Shelah Expansions

Roland Walker

University of Illinois at Chicago

September 22, 2016

Roland Walker (UIC)

Ext Def Sets and Shelah Expansions

September 22, 2016 1 / 28

Set Up and Notation

Let \mathcal{L} be a language.

Let T be a complete \mathcal{L} -theory with an infinite model \mathcal{M} .

Let \mathcal{U} denote the monster model of \mathcal{T} .

We will view all models of T as elementary substructures of U.

We will let x, y, z, ... range over finite tuples of variables and a, b, c, ... over finite tuples of parameters.

Set Up and Notation

Suppose $B \subset U$.

We will use $\mathcal{L}(B)$ to denote the set of all \mathcal{L} -formulae with parameters in B; i.e.,

$$\mathcal{L}(B) = \{\phi(x,b) : \phi(x,y) \in \mathcal{L} \text{ and } b \in B^{|y|}\}.$$

Given $a \in U$, we will use tp(a/B) to denote the "type of a over B"; i.e., tp $(a/B) = \{\phi(x, b) \in \mathcal{L}(B) : \mathcal{U} \models \phi(a, b)\}.$

We will use $S_n(B)$ to denote the set of all complete *n*-types over *B*; i.e., $S_n(B) = \{ tp(a/B) : a \in U^n \}.$

- 31

Traces and Induced Structures

Let $A \subset U$, $\phi(x, y) \in \mathcal{L}$, and $b \in U$.

Definition

The *trace* of $\phi(x, b)$ in A is

$$\phi(\mathsf{A},\mathsf{b}) = \{\mathsf{a} \in \mathsf{A}^{|\mathsf{x}|} : \mathcal{U} \models \phi(\mathsf{a},\mathsf{b})\}.$$

We can induce a structure on A using traces.

Definition

Given $B \subset U$, define the language

$$\mathcal{L}_{\mathrm{ind}B} = \{R_{\phi(x,b)}: \phi(x,b) \in \mathcal{L}(B)\}$$

and let A_{indB} denote the structure with domain A such that for all $a \in A^{|\mathbf{x}|}$, we have

$$A_{\operatorname{ind} B} \models R_{\phi(x,b)}(a) \iff \mathcal{U} \models \phi(a,b).$$

Externally Definable Sets and Shelah Expansions

Definition

We call $X \subseteq M^n$ externally definable iff: there exists $\phi(x, y) \in \mathcal{L}$ and $b \in U$ such that $X = \phi(M, b)$.

Let
$$\mathcal{M}' \succ \mathcal{M}$$
 be $|\mathcal{M}|^+$ -saturated.
Let $\mathcal{L}^{Sh} = \mathcal{L}_{ind\mathcal{M}'} = \{R_{\phi(x,b)} : \phi(x,b) \in \mathcal{L}(\mathcal{M}')\}.$
Let $\mathcal{M}^{Sh} = \mathcal{M}_{ind\mathcal{M}'}.$

By saturation, \mathcal{M}^{Sh} contains a predicate for every externally definable subset of M.

We will show that if T is NIP, then \mathcal{M}^{Sh} has quantifier elimination (QE).

Why do we care?

For any $A, B \subset U$, let Traces(A, B) denote the collection of all traces in A by formulae with parameters in B.

For any structure \mathcal{A} , let $\mathcal{D}(\mathcal{A})$ denote the collection of all sets definable in \mathcal{A} by formulae with parameters in \mathcal{A} .

In general:

- Traces $(A, B) \subseteq \mathcal{D}(A_{\text{ind}B})$
- Traces(M, M') = Traces $(M, U) \subseteq \mathcal{D}(\mathcal{M}^{Sh})$

If \mathcal{M}^{Sh} has QE:

• Traces(M, M') = Traces(M, U) = $\mathcal{D}(\mathcal{M}^{Sh})$ = $\mathcal{D}((\mathcal{M}^{Sh})^{Sh})$

- 3

Easy way to generate weakly o-minimal structures:

• If T is o-minimal (e.g., DLO, ODAG, RCF), it follows that \mathcal{M}^{Sh} is weakly o-minimal.

Current Research:

• What conditions are sufficient for M_{indA} to have QE?

Heirs and Coheirs

Suppose $M \subseteq B \subset U$. Let $q(x) \in S(B)$ extend $p(x) \in S(M)$.

Definition

We say q is an *heir* of p iff: q "satisfies no new formulae," meaning

 $\phi(x,b) \in q \implies \text{for some } m \in M, \phi(x,m) \in p.$

Intuition: The heirs of a type are the extensions of that type that are most like the original.

Definition

We say q is a *coheir* of p iff: q is finitely satisfiable in M.

Fact: Types over models have heirs and coheirs over any larger set of parameters.

Heir/Coheir Duality

For $a, b \in U$, TFAE:

- tp(a/Mb) is an heir of tp(a/M)
- tp(b/Ma) is a coheir of tp(b/M)
- for all $\phi(x,y) \in \mathcal{L}$, if $\mathcal{U} \models \phi(a,b)$, then $\mathcal{U} \models \phi(a,m)$ for some $m \in M$

Example: $(\mathbb{R}, <) \succ ((-1, 1), <) \models \mathsf{DLO}$

tp(3/(-1,1) ∪ {2}) is an heir but not a coheir of tp(3/(-1,1))
tp(2/(-1,1) ∪ {3}) is a coheir but not an heir of tp(2/(-1,1))

- 3

< 回 ト < 三 ト < 三 ト

Coheir Sequences are Indiscernible

Suppose $M \subseteq B \subset U$ and $q(x) \in S(B)$ is finitely satisfiable in M.

(Note: q is a coheir of $q \downarrow_M$)

Definition

A sequence $(b_i : i < \omega) \subseteq B$ such that $b_i \models q \mid_{Mb_{< i}}$ is called a *coheir* sequence for q over M.

Lemma

Coheir sequences over M are indiscernible over M.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Coheir Sequences are Indiscernible

Proof: Suppose $M \subseteq B \subset U$. Let $q(x) \in S(B)$ be finitely satisfiable in M. Suppose $(b_i : i < \omega) \subseteq B$ and $b_i \models q \downarrow_{Mb_{< i}}$.

Let P(n) denote the following assertion: $\forall i_1 < \cdots < i_n \ \forall \ \phi \in \mathcal{L}(M)$

$$\mathcal{U} \models \phi(b_{i_1}, ..., b_{i_n}) \leftrightarrow \phi(b_1, ..., b_n).$$

Assume $\neg P(n+1)$. So $\exists i_1 < \cdots < i_{n+1} \exists \phi \in \mathcal{L}(M)$ $\mathcal{U} \models \phi(b_{i_1}, ..., b_{i_n}, b_{i_{n+1}}) \land \neg \phi(b_1, ..., b_n, b_{n+1}).$

It follows that

$$\phi(b_{i_1},...,b_{i_n},x), \quad \neg\phi(b_1,...,b_n,x) \in q.$$

Since q is finitely satisfiable in M, there exists $m \in M$ such that

$$\mathcal{U} \models \phi(b_{i_1}, ..., b_{i_n}, m) \land \neg \phi(b_1, ..., b_n, m)].$$

But this implies $\neg P(n)$, so the lemma holds by induction on n.

The Independence Property

Definition

We say that T has the *independence property (is IP*) iff: for some $\phi(x, y) \in \mathcal{L}$, there exist sequences of parameters $(a_n : n < \omega)$ and $(b_X : X \subseteq \omega)$ such that

$$\mathcal{U} \models \phi(a_n, b_X) \quad \Longleftrightarrow \quad n \in X.$$

Fact: T is IP if and only if for some $\phi(x, u) \in \mathcal{L}(U)$, there exists a sequence of parameters $(a_n : n < \omega)$ which is indiscernible over \emptyset such that

$$\mathcal{U} \models \phi(a_n, u) \iff n \text{ is even.}$$

Definition

We say that T is NIP iff: T is not IP.

マロト イヨト イヨト ニヨ

Notation for the Quantifier-Free Setting

We will use "qf" as a subscript when we wish to consider only quantifier-free formulae. For example, given $a \in U$ and $B \subset U$:

- $\mathcal{L}_{qf}(B)$ denotes the quantifier-free formulae in $\mathcal{L}(B)$
- $S_{qf}(B)$ denotes the complete quantifier-free types over B
- $tp_{qf}(a/B)$ denotes the quantifier-free type of a over B

Quantifier-Free-Definable Types

Definition

We say that $p(x) \in S_{qf}(B)$ is *quantifier-free definable* iff: for every $\phi(x, y) \in \mathcal{L}_{qf}$, there exists $d_{\phi}(y) \in \mathcal{L}_{qf}(B)$ such that for all $b \in B^{|y|}$, we have

$$\phi(x,b)\in p\quad\Longleftrightarrow\quad \mathcal{U}\models d_{\phi}(b).$$

In such cases, we call $d = \{d_\phi: \phi \in \mathcal{L}_{qf}\}$ a *defining schema* for p.

Fact: If $A \subset U$, then $d(A) = \{\phi(x, a) : \mathcal{U} \models d_{\phi}(a)\} \in S_{qf}(A)$.

Example: $(\mathbb{Q}, <) \models \mathsf{DLO}$

• tp(0⁺/ \mathbb{Q}) is definable (e.g., $d_{x>y}(y)$ is $y \leq 0$)

• tp (π/\mathbb{Q}) is not definable by o-minimality

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Quantifier-Free Heirs and Coheirs

Suppose $M \subseteq B \subset U$. Let $q(x) \in S_{qf}(B)$ extend $p(x) \in S_{qf}(M)$.

Definition

We say q is a *quantifier-free heir* of p iff: q "satisfies no new formulae."

Definition

We say q is a *quantifier-free coheir* of p iff: q is finitely satisfiable in M.

Fact: Quantifier-free heirs and coheirs exist.

For $a, b \in U$, TFAE:

- $tp_{qf}(a/Mb)$ is a quantifier-free heir of $tp_{qf}(a/M)$
- $tp_{qf}(b/Ma)$ is a quantifier-free coheir of $tp_{qf}(b/M)$
- for all $\phi(x, y) \in \mathcal{L}_{qf}$, if $\mathcal{U} \models \phi(a, b)$, then $\mathcal{U} \models \phi(a, m)$ for some $m \in M$

Uniqueness of Quantifier-Free Heirs

Suppose $M \subseteq B \subset U$. Let $p(x) \in S_{qf}(M)$.

Lemma

If p is quantifier-free definable by schema d, then d(B) is the unique quantifier-free heir of p over B.

Proof: Elementarity ensures that d(B) is an heir since

$$\phi(x,b) \in d(B) \Rightarrow \mathcal{U} \models d_{\phi}(b) \Rightarrow \mathcal{U} \models \exists y \ d_{\phi}(y) \Rightarrow \mathcal{M} \models \exists y \ d_{\phi}(y).$$

Let $q \in S_{qf}(B)$ be an heir of p. In order to reach a contradiction, assume q is not d(B). It follows that for some $\phi(x, y) \in \mathcal{L}_{qf}$ and $b \in B$, we have

$$eg (\phi(x,b) \leftrightarrow d_{\phi}(b)) \in q.$$

But since q is an heir, this implies that

$$\neg(\phi(x,m)\leftrightarrow d_{\phi}(m))\in p$$

for some $m \in M$.

Uniqueness of Quantifier-Free Coheirs

Suppose $M \subseteq B \subset U$. Let $p(x) \in S_{af}(M)$.

Lemma

If every complete quantifier-free type over M is quantifier-free definable, then p has a unique quantifier-free coheir over B.

Proof: Suppose $q_1, q_2 \in S_{af}(B)$ are coheirs of p.

Let $a_1 \models q_1$, $a_2 \models q_2$, and $\phi(x, b) \in q_1$.

It follows that $tp_{af}(b/Ma_1)$ and $tp_{af}(b/Ma_2)$ are heirs of $tp_{af}(b/M)$. Let d be a defining schema for $tp_{af}(b/M)$.

The previous lemma asserts that $tp_{af}(b/Ma_i) = d(Ma_i)$ for i = 1, 2.

$$\begin{array}{rcl} \phi(x,b) \in q_i & \Longleftrightarrow & \mathcal{U} \models \phi(a_i,b) & \Longleftrightarrow & \phi(a_i,y) \in \mathrm{tp}_{\mathrm{qf}}(b/Ma_i) \\ & \Leftrightarrow & \mathcal{U} \models d_{\phi}(a_i) & \iff & d_{\phi}(x) \in p \end{array}$$

Constructing \mathcal{M}^{\ast}

Recall:

•
$$\mathcal{M}' \succ \mathcal{M}$$
 is $|\mathcal{M}|^+$ -saturated
• $\mathcal{L}^{Sh} = \mathcal{L}_{ind\mathcal{M}'} = \{R_{\phi(x,b)} : \phi(x,b) \in \mathcal{L}(\mathcal{M}')\}$
• $\mathcal{M}^{Sh} = \mathcal{M}_{ind\mathcal{M}'}$

Let
$$\mathcal{L}^* = \mathcal{L} \cup \mathcal{L}^{\mathsf{Sh}} = \mathcal{L} \cup \{R_{\phi(x,b)} : \phi(x,b) \in \mathcal{L}(M')\}.$$

For each
$$\phi(x, b) \in \mathcal{L}(M')$$
, let
 $R^{\mathcal{M}^*}_{\phi(x,b)} = \phi(M, b) = \{m \in M^{|x|} : \mathcal{M}' \models \phi(m, b)\}.$
 \mathcal{M}'
 Υ
 $\mathcal{M} \xleftarrow{\mathcal{L}\text{-reduct}} \mathcal{M}^* \xrightarrow{\mathcal{L}^{\text{Sh}}\text{-reduct}} \mathcal{M}^{\text{Sh}}$

<ロ> (日) (日) (日) (日) (日)

Properties of \mathcal{M}^*

$$\begin{array}{ccc} \mathcal{M}' & & \\ \Upsilon & & \\ \mathcal{M} & \xleftarrow{\mathcal{L}\text{-reduct}} & \mathcal{M}^* & \xrightarrow{\mathcal{L}^{\mathsf{Sh}}\text{-reduct}} & \mathcal{M}^{\mathsf{Sh}} \end{array}$$

For all $\phi(x) \in \mathcal{L}(M)$, we have

$$\mathcal{M}^* \models \phi(x) \leftrightarrow R_{\phi}(x).$$

Furthermore, by induction on \mathcal{L}_{qf}^* , we conclude that for all $\psi(x) \in \mathcal{L}_{qf}^*$, there exists $\theta(x) \in \mathcal{L}(M')$ such that

$$\mathcal{M}^* \models \psi(x) \leftrightarrow R_{\theta}(x).$$

Constructing a well-behaved $\mathcal{N}^* \succ \mathcal{M}^*$

Let $\kappa = |\mathcal{L}| + |M'|$. Let $(\mathcal{N}', N) \succ (\mathcal{M}', M)$ be κ^+ -saturated. For each $\phi(x, b) \in \mathcal{L}(M')$, let $R^{\mathcal{N}^*} = \phi(N, b) = \{n \in N^{|x|} : \mathcal{N}' \models \phi(n, b)\}$

$$R^{\mathcal{N}^+}_{\phi(x,b)} = \phi(N,b) = \{n \in N^{|x|} : \mathcal{N}' \models \phi(n,b)\}$$

It follows that $\mathcal{N}^* \succ \mathcal{M}^*$ is κ^+ -saturated.

Properties of \mathcal{N}^*

$$\begin{array}{cccc} \mathcal{U} & & & \\ \Upsilon & & & \\ \mathcal{N} & \xleftarrow{\mathcal{L}\text{-reduct}} & \mathcal{N}^{*} & & \\ \Upsilon & & & \Upsilon & \\ \mathcal{M} & \xleftarrow{\mathcal{L}\text{-reduct}} & \mathcal{M}^{*} & \xrightarrow{\mathcal{L}^{\text{Sh}}\text{-reduct}} & \mathcal{M}^{\text{Sh}} \end{array}$$

For all $\phi(x) \in \mathcal{L}(M)$, we have

$$\mathcal{N}^* \models \phi(x) \leftrightarrow R_{\phi}(x).$$

Furthermore, for all $\psi(x) \in \mathcal{L}^*_{qf}$, there exists $\theta(x) \in \mathcal{L}(M')$ such that

$$\mathcal{N}^* \models \psi(x) \leftrightarrow R_{\theta}(x).$$

21 / 28

- 3

Working with Types of T^*

Let $T^* = \text{Th}(\mathcal{M}^*)$.

We will use S^* when referring to type spaces of T^* .

Lemma

Each $p^*(x) \in S^*_{af}(\emptyset)$ extends uniquely to $p^* \upharpoonright^M (x) \in S^*_{af}(M)$.

Proof: For each $\phi(x, y) \in \mathcal{L}^*_{af}$ and $m \in M^{|x|}$, we have $\mathcal{M}^* \models \phi(x, m) \leftrightarrow R_{\nu=m}(y) \land \phi(x, y).$

Lemma

For each $q^*(x) \in S^*_{af}(N)$, there is a unique $q(x) \in S(N)$ such that $q^* \vdash q$.

Proof: For each $\phi(x, y) \in \mathcal{L}$ and $n \in N$, we have

$$\mathcal{N}^* \models \phi(x, n) \leftrightarrow R_{\phi}(x, n).$$

22 / 28

Types in $S^*_{af}(M)$ Are Quantifier-Free Definable

Lemma

Each $p^* \in S^*_{af}(M)$ is quantifier-free definable.

Proof: Fix $p^*(x) \in S^*_{qf}(M)$ and $\psi(x, y) \in \mathcal{L}^*_{qf}$. Let $a \in N$ realizes p^* . We need to find $d_{\psi}(y) \in \mathcal{L}^*_{qf}(M)$ whose trace in M is

$$B = \{b \in M : \mathcal{N}^* \models \psi(a, b)\}.$$

There exist $\theta(x, y) \in \mathcal{L}(M')$ such that for all $b \in M$, we have

$$\mathcal{N}^* \models \psi(a, b) \iff \mathcal{N}^* \models R_{\theta}(a, b) \iff \mathcal{U} \models \theta(a, b).$$

It follows that

$$B = \{b \in M : \mathcal{U} \models \theta(a, b)\}$$

and, therefore, is externally definable, so we can let d_{ψ} be $R_B \in \mathcal{L}^{Sh}$.

Lemma

 T^* has quantifier elimination if and only if for all $n < \omega$ and $p^* \in S^*_n(\emptyset)$, we have $T^* + p^* |_{gf} \vdash p^* |_{\exists}$.

Theorem

If T is NIP, then T^* has quantifier elimination.

Proof: (Contrapositive) Suppose T^* does not have quantifier elimination. There exists $p^*(x) \in S^*_{qf}(\emptyset)$ which has more than one extension to a complete existential type over \emptyset .

It follows that for some $\theta(x, y) \in \mathcal{L}(M')$, both $p^*(x) + \exists y R_{\theta}(x, y)$ and $p^*(x) + \neg \exists y R_{\theta}(x, y)$ are consistent with T^* .

Let $q^*(x, y) \in S^*_{af}(\emptyset)$ be an extension of $p^*(x) + R_{\theta}(x, y)$.

Let $p_1^*(x) \in S^*_{\mathrm{af}}(N)$ and $q_1^*(x, y) \in S^*_{\mathrm{af}}(N)$ be the unique coheirs of $p^* \upharpoonright^M$ and $q^* \upharpoonright^M$, respectively. It follows that $p_1^*(x) = q_1^*(x, y) \downarrow_x$.

Let $r_1^*(x) \in S^*(N)$ be an extension of $p^*(x) + \neg \exists y R_{\theta}(x, y)$ which is finitely satisfiable in *M*. It follows that $p_1^* \subseteq r_1^*$, so $p_1^*(x) + \neg \exists y R_{\theta}(x, y)$ is finitely satisfiable in N.

25 / 28

Recap:

- $q_1^*(x,y) \in S^*_{\mathsf{qf}}(N)$ is finitely satisfiable in M
- $R_{ heta}(x,y) \in q_1^*$
- $p_1^*(x) = q_1^* |_x$
- $p_1^*(x) + \neg \exists y \; R_{\theta}(x,y)$ is finitely satisfiable in N

Let $p_1(x) \in S(N)$ and $q_1(x,y) \in S(N)$ be such that $p_1^* \vdash p_1$ and $q_1^* \vdash q_1$.

Claim

 $q_1(x,y) + \neg R_{\theta}(x,y)$ is finitely satisfiable in N.

Proof of Claim: Let $a, a', b \in U$ such that

$$(a,b)\models q_1^*(x,y) \quad \text{and} \quad a'\models p_1^*(x)+\neg \exists y\ R_\theta(x,y).$$

Since $a, a' \models p_1(x)$, there exists $\sigma \in Aut(\mathcal{U}/N)$ mapping $a \mapsto a'$. Let $b' = \sigma(b)$. It follows that $(a', b') \models q_1(x, y) + \neg R_{\theta}(x, y)$.

Recap:

- $q_1^*(x,y) \in S^*_{\mathsf{qf}}(N)$ is finitely satisfiable in M
- $R_{ heta}(x,y) \in q_1^*$
- $q_1(x,y)\in S(N)$ such that $q_1^*dash q_1$
- $q_1(x,y) + \neg R_{\theta}(x,y)$ is finitely satisfiable in N

By saturation, we can construct $(a_n, b_n)_{n < \omega} \subseteq N$ so that

$$n \text{ even} : (a_n, b_n) \models q_1^*(x, y) \downarrow_{Ma_0b_0\dots a_{n-1}b_{n-1}}$$
$$n \text{ odd} : (a_n, b_n) \models q_1(x, y) \downarrow_{Ma_0b_0\dots a_{n-1}b_{n-1}} + \neg R_\theta(x, y)$$

Compactness implies that q_1 is finitely satisfiable in M, so $(a_n, b_n)_{n < \omega}$ is a coheir sequence and, as such, is \mathcal{L} -indiscernible over M.

Now $\mathcal{N}^* \models R_{\theta}(a_n, b_n)$ if and only if *n* is even, so $\mathcal{U} \models \theta(a_n, b_n)$ if and only if *n* is even. Thus, *T* is IP.

Active Research

Open Questions:

- In general, what conditions are sufficient for *M*_{indA} to have QE?
- If \mathcal{I} is a Morley sequence of an *M*-invariant type, does $M_{\text{ind }\mathcal{I}}$ have QE?

Closed Question:

If *I* is a Morley sequence of an *M*-invariant type *p* and *p*^(ω) is both an heir and a coheir of its restriction to *M*, does *M*_{ind *I*} have QE?
 YES (Simon, 2013)