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Set Up and Notation

Let £ be a language.

Let T be a complete L-theory with an infinite model M.

Let U denote the monster model of T.

We will view all models of T as elementary substructures of 1.

We will let x, y, z, ... range over finite tuples of variables and a, b, c, ...
over finite tuples of parameters.
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Set Up and Notation

Suppose B C U.

We will use £(B) to denote the set of all £-formulae with parameters in
B: ie.,

L(B) = {¢(x,b) : ¢(x,y) € L and b € BY}.
Given a € U, we will use tp(a/B) to denote the “type of a over B”; i.e.,
tp(a/B) = {¢(x, b) € L(B) : U |= ¢(a, b)}.

We will use S,(B) to denote the set of all complete n-types over B; i.e.,

Sn(B) = {tp(a/B):ac U"}.
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Traces and Induced Structures

Let AC U, ¢(x,y) € L, and b e U.
Definition
The trace of ¢(x,b)in Ais

$(A,b) = {a € AN : U k= ¢(a, b)}.
We can induce a structure on A using traces.
Definition
Given B C U, define the language

Linds = {Ry(x,0) : ¢(x, b) € L(B)}

and let Ajnqg denote the structure with domain A such that for all
a € AXl we have

Aindg = Ryxp)(a) <= U ¢(a,b).
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Externally Definable Sets and Shelah Expansions

Definition
We call X € M" externally definable iff:
there exists ¢(x,y) € £ and b € U such that X = ¢(M, b).

Let M’ = M be |M|"-saturated.
Let £5h = Lindm’ = {R¢(x,b) : qb(x, b) € E(M/)}

Let MSh = ind M’ -

By saturation, M5" contains a predicate for every externally definable
subset of M.

We will show that if T is NIP, then MSh has quantifier elimination (QE).
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Why do we care?

For any A, B C U, let Traces(A, B) denote the collection of all traces in A
by formulae with parameters in B.

For any structure A, let D(A) denote the collection of all sets definable in
A by formulae with parameters in A.

In general:
@ Traces(A, B) C D(AindB)
o Traces(M, M) = Traces(M, U) C D(M>")
If M5" has QE:
o Traces(M, M') = Traces(M, U) = D(M>") = D((M>)Sh)
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Why do we care?

Easy way to generate weakly o-minimal structures:

o If T is o-minimal (e.g., DLO, ODAG, RCF), it follows that M>" is
weakly o-minimal.

Current Research:

@ What conditions are sufficient for Mi,qa to have QE?
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Heirs and Coheirs

Suppose M C B C U. Let g(x) € S(B) extend p(x) € S(M).

Definition

We say g is an heir of p iff: g “satisfies no new formulae,” meaning
o(x,p) €q = forsome me M, ¢(x,m)¢€ p.

Intuition: The heirs of a type are the extensions of that type that are
most like the original.

Definition

We say q is a coheir of p iff: g is finitely satisfiable in M.

Fact: Types over models have heirs and coheirs over any larger set
of parameters.
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Heir/Coheir Duality

For a,b € U, TFAE:
e tp(a/Mb) is an heir of tp(a/M)
e tp(b/Ma) is a coheir of tp(b/ M)
e forall ¢(x,y) € L, if U |= ¢(a, b), then U |= ¢(a, m) for some m € M

Example: (R, <) > ((—1,1),<) = DLO
e tp(3/(—1,1) U {2}) is an heir but not a coheir of tp(3/(—1,1))
e tp(2/(—1,1) U {3}) is a coheir but not an heir of tp(2/(—1,1))
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Coheir Sequences are Indiscernible

Suppose M C B C U and q(x) € S(B) is finitely satisfiable in M.
(Note: g is a coheir of g|p )
Definition

A sequence (b; : i < w) C B such that b; = gl mp_; is called a coheir
sequence for q over M.

Lemma

Coheir sequences over M are indiscernible over M.
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Coheir Sequences are Indiscernible

Proof: Suppose M C B C U. Let g(x) € S(B) be finitely satisfiable in M.
Suppose (b : i <w) C B and b; = qlmp_;-

Let P(n) denote the following assertion: V iy < --- < i, V¢ € L(M)
U ): ¢(bf1, ceny b,'n) — (b(bl, ceny bn).
Assume =P(n+1). So i1 < -+ < ipy1 ¢ € L(M)

Uu ): ¢(bi1? ooy bin7 bin+1) A _‘Qb(bl, ey b, bn+1)‘
It follows that

¢(bi1,...,bin,x), ﬁgf)(bl,...,bn,X) € q.
Since q is finitely satisfiable in M, there exists m € M such that

U= ¢(b;1, .y b, m) A —|¢(b1, S, m)]

But this implies =P(n), so the lemma holds by induction on n.
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The Independence Property

Definition
We say that T has the independence property (is IP) iff: for some

#(x,y) € L, there exist sequences of parameters (a, : n < w) and
(bx : X C w) such that

UkE= ¢(an,bx) <= neX.
Fact: T is IP if and only if for some ¢(x, u) € L(U), there exists a

sequence of parameters (a, : n < w) which is indiscernible
over & such that

UE ¢(an,u) <= niseven.

Definition
We say that T is NIP iff: T is not IP.
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Notation for the Quantifier-Free Setting

We will use “qf” as a subscript when we wish to consider only
quantifier-free formulae. For example, given a € U and B C U:

o Lq(B) denotes the quantifier-free formulae in £(B)
@ Sqf(B) denotes the complete quantifier-free types over B

o tpyr(a/B) denotes the quantifier-free type of a over B
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Quantifier-Free-Definable Types

Definition

We say that p(x) € Sq¢(B) is quantifier-free definable iff: for every

d(x,y) € Lqf, there exists dy(y) € Lqf(B) such that for all b € B, we
have

p(x,b) ep <= U= dy(b).

In such cases, we call d = {d, : ¢ € Ly} a defining schema for p.
Fact: If AC U, then d(A) = {¢(x,a) : U |= dy(a)} € Sqe(A).

Example: (Q, <) = DLO

e tp(01/Q) is definable (e.g., dy>y(y) is y < 0)
e tp(7/Q) is not definable by o-minimality
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Quantifier-Free Heirs and Coheirs

Suppose M C B C U. Let q(x) € Sqf(B) extend p(x) € Sqe(M).

Definition

We say q is a quantifier-free heir of p iff: g “satisfies no new formulae.”

Definition
We say q is a quantifier-free coheir of p iff: q is finitely satisfiable in M.

Fact: Quantifier-free heirs and coheirs exist.

For a, b € U, TFAE:
o tpye(a/Mb) is a quantifier-free heir of tp.¢(a/M)
@ tpye(b/Ma) is a quantifier-free coheir of tpy¢(b/M)

o for all ¢(x,y) € Lqs, if U = ¢(a, b), then U = ¢(a, m) for some
meM
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Uniqueness of Quantifier-Free Heirs
Suppose M C B C U. Let p(x) € Sq¢(M).

Lemma

If p is quantifier-free definable by schema d, then d(B) is the unique
quantifier-free heir of p over B.

Proof: Elementarity ensures that d(B) is an heir since
¢(x,b) € d(B) = U = dy(b) = U =Ty dy(y) = M=y dy(y).

Let g € S4¢(B) be an heir of p. In order to reach a contradiction, assume
q is not d(B). It follows that for some ¢(x,y) € Lqr and b € B, we have

=(&(x; b) ¢ dy(b)) € q.
But since g is an heir, this implies that
—(¢(x, m) < dg(m)) € p

for some m € M.
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Uniqueness of Quantifier-Free Coheirs

Suppose M C B C U. Let p(x) € Sq(M).

Lemma

If every complete quantifier-free type over M is quantifier-free definable,
then p has a unique quantifier-free coheir over B.

Proof: Suppose q1, g2 € Sqf(B) are coheirs of p.

Let a1 = g1, a2 = g2, and ¢(x, b) € q;.

It follows that tp,¢(b/Maz) and tpye(b/Maz) are heirs of tp,¢(b/M).
Let d be a defining schema for tp,¢(b/M).

The previous lemma asserts that tp,¢(b/Ma;) = d(Ma;) for i = 1,2.

p(x,b) € qi = UEPa,b) <= ¢(ai,y) € tpg(b/Ma;)
= UEdya)) <= dy(x)ep
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Constructing M*

Recall:
o M’ = M is |M|*-saturated
o L = Linamr = {Ry(x,b) - #(x, b) € L(M')}
o M3 = Mingmr

Let £* = LU LN = LU {Ry(p) : d(x, b) € L(M)}.

For each ¢(x, b) € L(M'), let
RN 5y = (M. b) = {m e M. M |= ¢(m, b)}.

M
N
M L-reduct M* L£5P-reduct MSh
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Properties of M*

M
N
M L-reduct M* L£5"-reduct MSh

For all ¢(x) € L(M), we have
M E 6(x) & Ry(x).

Furthermore, by induction on L3, we conclude that for all ¢)(x) € L,
there exists 0(x) € £L(M’) such that

M* E (x) & Ry(x).
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Constructing a well-behaved NV* = M*
Let k = |L| + M.

Let (N, N) = (M', M) be kT -saturated.

For each ¢(x, b) € L(M'), let

*

Rty = ¢(N,b) = {n € N™: N |= ¢(n, b)}.

It follows that N* = M?* is kt-saturated.

U
Y
N L-reduct N*
Y Y
M L-reduct M* L£5P-reduct MSh

Roland Walker (UIC) Ext Def Sets and Shelah Expansions September 22, 2016 20 / 28



Properties of N/*

U
Y
N L-reduct N*
Y Y
M L-reduct M* £5"-reduct MSh

For all ¢(x) € L(M), we have
N* = ¢(x) < Ry(x).
Furthermore, for all 1(x) € L, there exists 6(x) € L(M') such that

N* = (x) < Ry(x).
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Working with Types of T*
Let T* = Th(M*).

We will use S* when referring to type spaces of T*.

Lemma

Each p*(x) € S3(2) extends uniquely to p*I™ (x) € af(M).
Proof: For each ¢(x,y) € Li¢ and m € MM, we have

M* E ¢(x,m) <> Ry=m(y) A d(x,y).

Lemma
For each q*(x) € S5;¢(N), there is a unique q(x) € S(N) such that q* - q.

Proof: For each ¢(x,y) € L and n € N, we have
N* = ¢(x, n) <> Ry(x, n).
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Types in S;((M) Are Quantifier-Free Definable

Lemma
Each p* € S3(M) is quantifier-free definable.
Proof: Fix p*(x) € S3(M) and 9(x, y) € L. Let a € N realizes p*.
We need to find dy(y) € L3(M) whose trace in M is
B={beM:N*E(a,b)}.

There exist 0(x,y) € L(M’) such that for all b € M, we have

N*E=(a,b) << N'[ERy(a,b) < UE6H(a,b).
It follows that

B={beM:UEH(ab)}

and, therefore, is externally definable, so we can let d;, be Rg € L£h.
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TNIP = T*QE

Lemma

T* has quantifier elimination if and only if for all n < w and p* € S;(2),
we have T* 4 p*|q¢ = p*|3.

Theorem
If T is NIP, then T* has quantifier elimination.

Proof: (Contrapositive) Suppose T* does not have quantifier elimination.

There exists p*(x) € 5;}(@) which has more than one extension to a
complete existential type over &.
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TNIP = T*QE

It follows that for some 6(x,y) € L(M’), both
P (x)+ Iy Ro(x,y)  and  p*(x) + -3y Re(x,y)

are consistent with T*.
Let g*(x, y) € S4(@) be an extension of p*(x) + Ry(x, y).

Let pi(x) € Sg(N) and gi(x, y) € Sg(N) be the unique coheirs of p* M

and g*[M, respectively. It follows that pi(x) = g} (x,y)|x-

Let r{(x) € S*(N) be an extension of p*(x) + -3y Ry(x, y) which is

finitely satisfiable in M. It follows that pj C r{, so pj(x) + =3y Ry(x,y) is
finitely satisfiable in N.
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TNIP = T*QE

Recap:
° gi(x,y) € Sy(N) is finitely satisfiable in M
® Ry(x,y) € ai
o pi(x) = qilx

(
e pi(x) + —3Jy Ro(x,y) is finitely satisfiable in N
Let p1(x) € S(N) and qi1(x,y) € S(N) be such that pj - p1 and ¢} - qi.

Claim
g1(x,y) + =Ro(x, y) is finitely satisfiable in N.

Proof of Claim: Let a,a’, b € U such that

(a,b) = qi(x,y) and a" = pi(x) + =3y Ro(x, y).
Since a,a’ = pi(x), there exists o € Aut(U/N) mapping a+— a'.
Let b’ = o(b). It follows that (a', b)) = q1(x,y) + —Rae(x,y).
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TNIP = T*QE

Recap:
 gi(x,y) € Sy(N) is finitely satisfiable in M
° Ry(x,y) € qi
e qi(x,y) € S(N) such that g F q1
e qi(x,y) + —Ro(x, y) is finitely satisfiable in N
By saturation, we can construct (a,, bp)n<w € N so that
neven : (an, bp) = G5 (X, ¥) | Magbo...an—1b,1

n Odd . (an; bn) ): ql(X7.y) LMaobo...a,,,lb,,,l + _‘RG(X’Y)

Compactness implies that gy is finitely satisfiable in M, so (ap, bp)n<w is a
coheir sequence and, as such, is L-indiscernible over M.

Now N* = Ry(an, by) if and only if n is even, so U = 6(a,, by,) if and only
if nis even. Thus, T is IP. O
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Active Research

Open Questions:

@ In general, what conditions are sufficient for Mi,qa to have QE?

o If Z is a Morley sequence of an M-invariant type, does Mi,qz have

QE?

Closed Question:

e If Z is a Morley sequence of an M-invariant type p and p{*) is both
an heir and a coheir of its restriction to M, does Mi,q7 have QE?

YES (Simon, 2013)
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