Externally Definable Sets and Shelah Expansions

Roland Walker
University of Illinois at Chicago

September 22, 2016

Set Up and Notation

Let \mathcal{L} be a language.
Let T be a complete \mathcal{L}-theory with an infinite model \mathcal{M}.
Let \mathcal{U} denote the monster model of T.
We will view all models of T as elementary substructures of \mathcal{U}.
We will let x, y, z, \ldots range over finite tuples of variables and a, b, c, \ldots over finite tuples of parameters.

Set Up and Notation

Suppose $B \subset U$.
We will use $\mathcal{L}(B)$ to denote the set of all \mathcal{L}-formulae with parameters in B; i.e.,

$$
\mathcal{L}(B)=\left\{\phi(x, b): \phi(x, y) \in \mathcal{L} \text { and } b \in B^{|y|}\right\} .
$$

Given $a \in U$, we will use $\operatorname{tp}(a / B)$ to denote the "type of a over B "; i.e.,

$$
\operatorname{tp}(a / B)=\{\phi(x, b) \in \mathcal{L}(B): \mathcal{U} \models \phi(a, b)\}
$$

We will use $S_{n}(B)$ to denote the set of all complete n-types over B; i.e.,

$$
S_{n}(B)=\left\{\operatorname{tp}(a / B): a \in U^{n}\right\}
$$

Traces and Induced Structures

Let $A \subset U, \phi(x, y) \in \mathcal{L}$, and $b \in U$.

Definition

The trace of $\phi(x, b)$ in A is

$$
\phi(A, b)=\left\{a \in A^{|x|}: \mathcal{U} \models \phi(a, b)\right\} .
$$

We can induce a structure on A using traces.

Definition

Given $B \subset U$, define the language

$$
\mathcal{L}_{\text {ind } B}=\left\{R_{\phi(x, b)}: \phi(x, b) \in \mathcal{L}(B)\right\}
$$

and let $A_{\text {ind } B}$ denote the structure with domain A such that for all $a \in A^{|x|}$, we have

$$
A_{\text {ind } B} \models R_{\phi(x, b)}(a) \quad \Longleftrightarrow \quad \mathcal{U} \models \phi(a, b) .
$$

Externally Definable Sets and Shelah Expansions

Definition

We call $X \subseteq M^{n}$ externally definable iff: there exists $\phi(x, y) \in \mathcal{L}$ and $b \in U$ such that $X=\phi(M, b)$.

Let $\mathcal{M}^{\prime} \succ \mathcal{M}$ be $|M|^{+}$-saturated.
Let $\mathcal{L}^{\mathrm{Sh}}=\mathcal{L}_{\text {ind } M^{\prime}}=\left\{R_{\phi(x, b)}: \phi(x, b) \in \mathcal{L}\left(M^{\prime}\right)\right\}$.
Let $\mathcal{M}^{\text {Sh }}=M_{\text {ind }} M^{\prime}$.
By saturation, $\mathcal{M}^{\text {Sh }}$ contains a predicate for every externally definable subset of M.

We will show that if T is NIP, then $\mathcal{M}^{\text {Sh }}$ has quantifier elimination (QE).

Why do we care?

For any $A, B \subset U$, let $\operatorname{Traces}(A, B)$ denote the collection of all traces in A by formulae with parameters in B.

For any structure \mathcal{A}, let $\mathcal{D}(\mathcal{A})$ denote the collection of all sets definable in \mathcal{A} by formulae with parameters in A.

In general:

- $\operatorname{Traces}(A, B) \subseteq \mathcal{D}\left(A_{\text {ind } B}\right)$
- $\operatorname{Traces}\left(M, M^{\prime}\right)=\operatorname{Traces}(M, U) \subseteq \mathcal{D}\left(\mathcal{M}^{\text {Sh }}\right)$

If $\mathcal{M}^{\text {Sh }}$ has QE:

- $\operatorname{Traces}\left(M, M^{\prime}\right)=\operatorname{Traces}(M, U)=\mathcal{D}\left(\mathcal{M}^{\mathrm{Sh}}\right)=\mathcal{D}\left(\left(\mathcal{M}^{\mathrm{Sh}}\right)^{\mathrm{Sh}}\right)$

Why do we care?

Easy way to generate weakly o-minimal structures:

- If T is o-minimal (e.g., DLO, ODAG, RCF), it follows that $\mathcal{M}^{\mathrm{Sh}}$ is weakly o-minimal.

Current Research:

- What conditions are sufficient for $M_{\text {ind }}$ to have QE?

Heirs and Coheirs

Suppose $M \subseteq B \subset U$. Let $q(x) \in S(B)$ extend $p(x) \in S(M)$.

Definition

We say q is an heir of p iff: q "satisfies no new formulae," meaning

$$
\phi(x, b) \in q \quad \Longrightarrow \quad \text { for some } m \in M, \quad \phi(x, m) \in p
$$

Intuition: The heirs of a type are the extensions of that type that are most like the original.

Definition

We say q is a coheir of p iff: q is finitely satisfiable in M.
Fact: Types over models have heirs and coheirs over any larger set of parameters.

Heir/Coheir Duality

For $a, b \in U$, TFAE:

- $\operatorname{tp}(a / M b)$ is an heir of $\operatorname{tp}(a / M)$
- $\operatorname{tp}(b / M a)$ is a coheir of $\operatorname{tp}(b / M)$
- for all $\phi(x, y) \in \mathcal{L}$, if $\mathcal{U} \models \phi(a, b)$, then $\mathcal{U} \models \phi(a, m)$ for some $m \in M$

Example: $(\mathbb{R},<) \succ((-1,1),<) \models$ DLO

- $\operatorname{tp}(3 /(-1,1) \cup\{2\})$ is an heir but not a coheir of $\operatorname{tp}(3 /(-1,1))$
- $\operatorname{tp}(2 /(-1,1) \cup\{3\})$ is a coheir but not an heir of $\operatorname{tp}(2 /(-1,1))$

Coheir Sequences are Indiscernible

Suppose $M \subseteq B \subset U$ and $q(x) \in S(B)$ is finitely satisfiable in M.
(Note: q is a coheir of $q l_{M}$)
Definition
A sequence $\left(b_{i}: i<\omega\right) \subseteq B$ such that $\left.b_{i} \models q\right|_{M b_{<i}}$ is called a coheir sequence for q over M.

Lemma

Coheir sequences over M are indiscernible over M.

Coheir Sequences are Indiscernible

Proof: Suppose $M \subseteq B \subset U$. Let $q(x) \in S(B)$ be finitely satisfiable in M. Suppose $\left(b_{i}: i<\omega\right) \subseteq B$ and $b_{i} \xlongequal{ }=\left.q\right|_{M b_{<i}}$.

Let $P(n)$ denote the following assertion: $\forall i_{1}<\cdots<i_{n} \forall \phi \in \mathcal{L}(M)$

$$
\mathcal{U} \models \phi\left(b_{i_{1}}, \ldots, b_{i_{n}}\right) \leftrightarrow \phi\left(b_{1}, \ldots, b_{n}\right) .
$$

Assume $\neg P(n+1)$. So $\exists i_{1}<\cdots<i_{n+1} \exists \phi \in \mathcal{L}(M)$

$$
\mathcal{U} \vDash \phi\left(b_{i_{1}}, \ldots, b_{i_{n}}, b_{i_{n+1}}\right) \wedge \neg \phi\left(b_{1}, \ldots, b_{n}, b_{n+1}\right) .
$$

It follows that

$$
\phi\left(b_{i_{1}}, \ldots, b_{i_{n}}, x\right), \quad \neg \phi\left(b_{1}, \ldots, b_{n}, x\right) \quad \in \quad q .
$$

Since q is finitely satisfiable in M, there exists $m \in M$ such that

$$
\left.\mathcal{U} \vDash \phi\left(b_{i_{1}}, \ldots, b_{i_{n}}, m\right) \wedge \neg \phi\left(b_{1}, \ldots, b_{n}, m\right)\right] .
$$

But this implies $\neg P(n)$, so the lemma holds by induction on n.

The Independence Property

Definition

We say that T has the independence property (is IP) iff: for some $\phi(x, y) \in \mathcal{L}$, there exist sequences of parameters $\left(a_{n}: n<\omega\right)$ and ($b_{X}: X \subseteq \omega$) such that

$$
\mathcal{U} \models \phi\left(a_{n}, b_{X}\right) \quad \Longleftrightarrow \quad n \in X
$$

Fact: T is IP if and only if for some $\phi(x, u) \in \mathcal{L}(U)$, there exists a sequence of parameters $\left(a_{n}: n<\omega\right)$ which is indiscernible over \varnothing such that

$$
\mathcal{U} \models \phi\left(a_{n}, u\right) \quad \Longleftrightarrow \quad n \text { is even. }
$$

Definition

We say that T is NIP iff: T is not IP.

Notation for the Quantifier-Free Setting

We will use "qf" as a subscript when we wish to consider only quantifier-free formulae. For example, given $a \in U$ and $B \subset U$:

- $\mathcal{L}_{\text {qf }}(B)$ denotes the quantifier-free formulae in $\mathcal{L}(B)$
- $S_{\mathrm{qf}}(B)$ denotes the complete quantifier-free types over B
- $\operatorname{tp}_{\mathrm{qf}}(a / B)$ denotes the quantifier-free type of a over B

Quantifier-Free-Definable Types

Definition

We say that $p(x) \in S_{\mathrm{qf}}(B)$ is quantifier-free definable iff: for every $\phi(x, y) \in \mathcal{L}_{\text {qf }}$, there exists $d_{\phi}(y) \in \mathcal{L}_{\text {qf }}(B)$ such that for all $b \in B^{|y|}$, we have

$$
\phi(x, b) \in p \quad \Longleftrightarrow \quad \mathcal{U} \models d_{\phi}(b)
$$

In such cases, we call $d=\left\{d_{\phi}: \phi \in \mathcal{L}_{\text {qf }}\right\}$ a defining schema for p.
Fact: If $A \subset U$, then $d(A)=\left\{\phi(x, a): \mathcal{U} \models d_{\phi}(a)\right\} \in S_{\mathrm{qf}}(A)$.

Example: $(\mathbb{Q},<) \models$ DLO

- $\operatorname{tp}\left(0^{+} / \mathbb{Q}\right)$ is definable (e.g., $d_{x>y}(y)$ is $y \leq 0$)
- $\operatorname{tp}(\pi / \mathbb{Q})$ is not definable by o-minimality

Quantifier-Free Heirs and Coheirs

Suppose $M \subseteq B \subset U$. Let $q(x) \in S_{\mathrm{qf}}(B)$ extend $p(x) \in S_{\mathrm{qf}}(M)$.

Definition

We say q is a quantifier-free heir of p iff: q "satisfies no new formulae."

Definition

We say q is a quantifier-free coheir of p iff: q is finitely satisfiable in M.
Fact: Quantifier-free heirs and coheirs exist.
For $a, b \in U$, TFAE:

- $\operatorname{tp}_{\mathrm{qf}}(a / M b)$ is a quantifier-free heir of $\operatorname{tp}_{\mathrm{qf}}(a / M)$
- $\operatorname{tp}_{\mathrm{qf}}(b / M a)$ is a quantifier-free coheir of $\operatorname{tp}_{\mathrm{qf}}(b / M)$
- for all $\phi(x, y) \in \mathcal{L}_{\text {qf }}$, if $\mathcal{U} \models \phi(a, b)$, then $\mathcal{U} \models \phi(a, m)$ for some $m \in M$

Uniqueness of Quantifier-Free Heirs

$$
\text { Suppose } M \subseteq B \subset U \text {. Let } p(x) \in S_{\mathrm{qf}}(M) \text {. }
$$

Lemma

If p is quantifier-free definable by schema d, then $d(B)$ is the unique quantifier-free heir of p over B.

Proof: Elementarity ensures that $d(B)$ is an heir since

$$
\phi(x, b) \in d(B) \Rightarrow \mathcal{U} \vDash d_{\phi}(b) \Rightarrow \mathcal{U} \models \exists y d_{\phi}(y) \Rightarrow \mathcal{M} \models \exists y d_{\phi}(y)
$$

Let $q \in S_{\mathrm{qf}}(B)$ be an heir of p. In order to reach a contradiction, assume q is not $d(B)$. It follows that for some $\phi(x, y) \in \mathcal{L}_{\text {qf }}$ and $b \in B$, we have

$$
\neg\left(\phi(x, b) \leftrightarrow d_{\phi}(b)\right) \in q
$$

But since q is an heir, this implies that

$$
\neg\left(\phi(x, m) \leftrightarrow d_{\phi}(m)\right) \in p
$$

for some $m \in M$.

Uniqueness of Quantifier-Free Coheirs

Suppose $M \subseteq B \subset U$. Let $p(x) \in S_{\mathrm{qf}}(M)$.

Lemma

If every complete quantifier-free type over M is quantifier-free definable, then p has a unique quantifier-free coheir over B.

Proof: Suppose $q_{1}, q_{2} \in S_{\mathrm{qf}}(B)$ are coheirs of p.
Let $a_{1} \models q_{1}, a_{2} \models q_{2}$, and $\phi(x, b) \in q_{1}$.
It follows that $\operatorname{tp}_{\mathrm{qf}}\left(b / M a_{1}\right)$ and $\operatorname{tp}_{\mathrm{qf}}\left(b / M a_{2}\right)$ are heirs of $\operatorname{tp}_{\mathrm{qf}}(b / M)$.
Let d be a defining schema for $\operatorname{tp}_{\mathrm{qf}}(b / M)$.
The previous lemma asserts that $\operatorname{tp}_{\mathrm{qf}}\left(b / M a_{i}\right)=d\left(M a_{i}\right)$ for $i=1,2$.

$$
\left.\begin{array}{rl}
\phi(x, b) \in q_{i} & \Longleftrightarrow \mathcal{U} \models \phi\left(a_{i}, b\right) \\
& \Longleftrightarrow \mathcal{U} \models d_{\phi}\left(a_{i}\right)
\end{array} \Longleftrightarrow d_{i}, y\right) \in \operatorname{tp}_{\mathrm{qf}}\left(b / M a_{i}\right)
$$

Constructing \mathcal{M}^{*}

Recall:

- $\mathcal{M}^{\prime} \succ \mathcal{M}$ is $|M|^{+}$-saturated
- $\mathcal{L}^{\text {Sh }}=\mathcal{L}_{\text {ind } M^{\prime}}=\left\{R_{\phi(x, b)}: \phi(x, b) \in \mathcal{L}\left(M^{\prime}\right)\right\}$
- $\mathcal{M}^{\mathrm{Sh}}=M_{\mathrm{ind}} M^{\prime}$

Let $\mathcal{L}^{*}=\mathcal{L} \cup \mathcal{L}^{S h}=\mathcal{L} \cup\left\{R_{\phi(x, b)}: \phi(x, b) \in \mathcal{L}\left(M^{\prime}\right)\right\}$.
For each $\phi(x, b) \in \mathcal{L}\left(M^{\prime}\right)$, let

$$
R_{\phi(x, b)}^{\mathcal{M}^{*}}=\phi(M, b)=\left\{m \in M^{|x|}: \mathcal{M}^{\prime} \models \phi(m, b)\right\} .
$$

\mathcal{M}^{\prime}
r
$\mathcal{M} \stackrel{\text { - -reduct }}{\longleftarrow} \mathcal{M}^{*} \xrightarrow{\mathcal{L}^{\text {Sh }} \text {-reduct }} \quad \mathcal{M}^{\text {Sh }}$

Properties of \mathcal{M}^{*}

$$
\begin{aligned}
& \mathcal{M}^{\prime} \\
& \gamma \\
& \mathcal{M} \\
& \underset{\sim}{\mathcal{L} \text {-reduct }} \quad \mathcal{M}^{*} \xrightarrow{\mathcal{L}^{\text {Sh-reduct }}} \mathcal{M}^{\text {Sh }}
\end{aligned}
$$

For all $\phi(x) \in \mathcal{L}(M)$, we have

$$
\mathcal{M}^{*} \models \phi(x) \leftrightarrow R_{\phi}(x)
$$

Furthermore, by induction on $\mathcal{L}_{\mathrm{qf}}^{*}$, we conclude that for all $\psi(x) \in \mathcal{L}_{\mathrm{qf}}^{*}$, there exists $\theta(x) \in \mathcal{L}\left(M^{\prime}\right)$ such that

$$
\mathcal{M}^{*} \models \psi(x) \leftrightarrow R_{\theta}(x)
$$

Constructing a well-behaved $\mathcal{N}^{*} \succ \mathcal{M}^{*}$

Let $\kappa=|\mathcal{L}|+\left|M^{\prime}\right|$.
Let $\left(\mathcal{N}^{\prime}, N\right) \succ\left(\mathcal{M}^{\prime}, M\right)$ be κ^{+}-saturated.
For each $\phi(x, b) \in \mathcal{L}\left(M^{\prime}\right)$, let

$$
R_{\phi(x, b)}^{\mathcal{N} *}=\phi(N, b)=\left\{n \in N^{|x|}: \mathcal{N}^{\prime} \models \phi(n, b)\right\} .
$$

It follows that $\mathcal{N}^{*} \succ \mathcal{M}^{*}$ is κ^{+}-saturated.

r
\mathcal{M}

Properties of \mathcal{N}^{*}

$$
\begin{array}{cccc}
\mathcal{U} & & \\
\curlyvee & & \\
\mathcal{N} & \longleftarrow \mathcal{L} \text {-reduct } & \mathcal{N}^{*} & \\
\gamma & & \curlyvee & \\
\mathcal{M} & \stackrel{\mathcal{L} \text {-reduct }}{ } & \mathcal{M}^{*} & \\
\mathcal{L}^{\text {Sh_reduct }} & \mathcal{M}^{\mathrm{Sh}}
\end{array}
$$

For all $\phi(x) \in \mathcal{L}(M)$, we have

$$
\mathcal{N}^{*} \models \phi(x) \leftrightarrow R_{\phi}(x)
$$

Furthermore, for all $\psi(x) \in \mathcal{L}_{\mathrm{qf}}^{*}$, there exists $\theta(x) \in \mathcal{L}\left(M^{\prime}\right)$ such that

$$
\mathcal{N}^{*} \models \psi(x) \leftrightarrow R_{\theta}(x)
$$

Working with Types of T^{*}

Let $T^{*}=\operatorname{Th}\left(\mathcal{M}^{*}\right)$.
We will use S^{*} when referring to type spaces of T^{*}.

Lemma

Each $p^{*}(x) \in S_{\mathrm{qf}}^{*}(\varnothing)$ extends uniquely to $p^{*} \upharpoonright^{M}(x) \in S_{\mathrm{qf}}^{*}(M)$.
Proof: For each $\phi(x, y) \in \mathcal{L}_{\mathrm{qf}}^{*}$ and $m \in M^{|x|}$, we have

$$
\mathcal{M}^{*} \models \phi(x, m) \leftrightarrow R_{y=m}(y) \wedge \phi(x, y) .
$$

Lemma

For each $q^{*}(x) \in S_{q f}^{*}(N)$, there is a unique $q(x) \in S(N)$ such that $q^{*} \vdash q$.
Proof: For each $\phi(x, y) \in \mathcal{L}$ and $n \in N$, we have

$$
\mathcal{N}^{*} \models \phi(x, n) \leftrightarrow R_{\phi}(x, n) .
$$

Types in $S_{\mathrm{qf}}^{*}(M)$ Are Quantifier-Free Definable

Lemma

Each $p^{*} \in S_{\mathrm{qf}}^{*}(M)$ is quantifier-free definable.
Proof: Fix $p^{*}(x) \in S_{\mathrm{qf}}^{*}(M)$ and $\psi(x, y) \in \mathcal{L}_{\mathrm{qf}}^{*}$. Let $a \in N$ realizes p^{*}.
We need to find $d_{\psi}(y) \in \mathcal{L}_{\text {qf }}^{*}(M)$ whose trace in M is

$$
B=\left\{b \in M: \mathcal{N}^{*} \models \psi(a, b)\right\} .
$$

There exist $\theta(x, y) \in \mathcal{L}\left(M^{\prime}\right)$ such that for all $b \in M$, we have

$$
\mathcal{N}^{*} \models \psi(a, b) \quad \Longleftrightarrow \quad \mathcal{N}^{*} \models R_{\theta}(a, b) \quad \Longleftrightarrow \quad \mathcal{U} \models \theta(a, b) .
$$

It follows that

$$
B=\{b \in M: \mathcal{U} \models \theta(a, b)\}
$$

and, therefore, is externally definable, so we can let d_{ψ} be $R_{B} \in \mathcal{L}^{\mathrm{Sh}}$.

T NIP $\quad \Longrightarrow \quad T^{*}$ QE

Lemma

T^{*} has quantifier elimination if and only if for all $n<\omega$ and $p^{*} \in S_{n}^{*}(\varnothing)$, we have $T^{*}+\left.\left.p^{*}\right|_{\text {qf }} \vdash p^{*}\right|_{\exists}$.

Theorem

If T is NIP, then T^{*} has quantifier elimination.

Proof: (Contrapositive) Suppose T^{*} does not have quantifier elimination. There exists $p^{*}(x) \in S_{\mathrm{qf}}^{*}(\varnothing)$ which has more than one extension to a complete existential type over \varnothing.

T NIP $\quad \Longrightarrow \quad T^{*} \mathrm{QE}$

It follows that for some $\theta(x, y) \in \mathcal{L}\left(M^{\prime}\right)$, both

$$
p^{*}(x)+\exists y R_{\theta}(x, y) \quad \text { and } \quad p^{*}(x)+\neg \exists y R_{\theta}(x, y)
$$

are consistent with T^{*}.
Let $q^{*}(x, y) \in S_{\mathrm{qf}}^{*}(\varnothing)$ be an extension of $p^{*}(x)+R_{\theta}(x, y)$.
Let $p_{1}^{*}(x) \in S_{\mathrm{qf}}^{*}(N)$ and $q_{1}^{*}(x, y) \in S_{\mathrm{qf}}^{*}(N)$ be the unique coheirs of $p^{*} \upharpoonright^{M}$ and $q^{*} \upharpoonright^{M}$, respectively. It follows that $p_{1}^{*}(x)=\left.q_{1}^{*}(x, y)\right|_{x}$.

Let $r_{1}^{*}(x) \in S^{*}(N)$ be an extension of $p^{*}(x)+\neg \exists y R_{\theta}(x, y)$ which is finitely satisfiable in M. It follows that $p_{1}^{*} \subseteq r_{1}^{*}$, so $p_{1}^{*}(x)+\neg \exists y R_{\theta}(x, y)$ is finitely satisfiable in N.

T NIP $\quad \Longrightarrow \quad T^{*} \mathrm{QE}$

Recap:

- $q_{1}^{*}(x, y) \in S_{\mathrm{qf}}^{*}(N)$ is finitely satisfiable in M
- $R_{\theta}(x, y) \in q_{1}^{*}$
- $p_{1}^{*}(x)=q_{1}^{*} l_{x}$
- $p_{1}^{*}(x)+\neg \exists y R_{\theta}(x, y)$ is finitely satisfiable in N

Let $p_{1}(x) \in S(N)$ and $q_{1}(x, y) \in S(N)$ be such that $p_{1}^{*} \vdash p_{1}$ and $q_{1}^{*} \vdash q_{1}$.

Claim

$q_{1}(x, y)+\neg R_{\theta}(x, y)$ is finitely satisfiable in N.
Proof of Claim: Let $a, a^{\prime}, b \in U$ such that

$$
(a, b) \models q_{1}^{*}(x, y) \quad \text { and } \quad a^{\prime} \models p_{1}^{*}(x)+\neg \exists y R_{\theta}(x, y) .
$$

Since $a, a^{\prime} \models p_{1}(x)$, there exists $\sigma \in \operatorname{Aut}(\mathcal{U} / N)$ mapping $a \mapsto a^{\prime}$.
Let $b^{\prime}=\sigma(b)$. It follows that $\left(a^{\prime}, b^{\prime}\right) \models q_{1}(x, y)+\neg R_{\theta}(x, y)$.

$T \mathrm{NIP} \quad \Longrightarrow \quad T^{*} \mathrm{QE}$

Recap:

- $q_{1}^{*}(x, y) \in S_{\mathrm{qf}}^{*}(N)$ is finitely satisfiable in M
- $R_{\theta}(x, y) \in q_{1}^{*}$
- $q_{1}(x, y) \in S(N)$ such that $q_{1}^{*} \vdash q_{1}$
- $q_{1}(x, y)+\neg R_{\theta}(x, y)$ is finitely satisfiable in N

By saturation, we can construct $\left(a_{n}, b_{n}\right)_{n<\omega} \subseteq N$ so that

$$
\left.\begin{aligned}
n \text { even }: & \left(a_{n}, b_{n}\right) \\
n \text { odd }: & \left.\left.\models q_{1}^{*}(x, y)\right|_{M a_{0} b_{0} \ldots a_{n-1} b_{n-1}}, b_{n}\right)
\end{aligned} \models_{1}(x, y)\right|_{M_{a_{0}} b_{0} \ldots a_{n-1} b_{n-1}}+\neg R_{\theta}(x, y) .
$$

Compactness implies that q_{1} is finitely satisfiable in M, so $\left(a_{n}, b_{n}\right)_{n<\omega}$ is a coheir sequence and, as such, is \mathcal{L}-indiscernible over M.

Now $\mathcal{N}^{*} \models R_{\theta}\left(a_{n}, b_{n}\right)$ if and only if n is even, so $\mathcal{U} \models \theta\left(a_{n}, b_{n}\right)$ if and only if n is even. Thus, T is IP.

Active Research

Open Questions:

- In general, what conditions are sufficient for $M_{\text {ind } A}$ to have QE?
- If \mathcal{I} is a Morley sequence of an M-invariant type, does $M_{\text {ind }} \mathcal{I}$ have QE?

Closed Question:

- If \mathcal{I} is a Morley sequence of an M-invariant type p and $p^{(\omega)}$ is both an heir and a coheir of its restriction to M, does $M_{\text {ind } \mathcal{I}}$ have QE?

YES (Simon, 2013)

